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Abstract. Museums around the world have built databases with meta-
data about millions of objects, their history, the people who created 
them, and the entities they represent. This data is stored in proprietary 
databases and is not readily available for use. Recently, museums em-
braced the Semantic Web as a means to make this data available to 
the world, but the experience so far shows that publishing museum data 
to the Linked Data cloud is difficult: the databases are large and com-
plex, the information is richly structured and varies from museum to 
museum, and it is difficult to link the data to other datasets. This paper 
describes the lessons learned in publishing the data from the Smithso-
nian American Art Museum (SAAM). We highlight complexities of the 
database-to-RDF mapping process, discuss our experience linking the 
SAAM dataset to hub datasets such as DBpedia, and present our expe-
rience in allowing SAAM personnel to review the information to verify 
that it meets the high standards of the Smithsonian. Using our tools, 
we helped SAAM publish 5-star Linked Data of their complete holdings 
(41,000 objects, 8,000 artists), richly linked to DBpedia and the Getty 
Union List of Artist Names (ULAN), and verified to be of high quality. 

1 Introduction 

Recently, there have been a number of efforts to publish metadata about the 
objects in museums as Linked Open Data (LOD). Some notable efforts include 
the Euopeana project [7], which published data on 1,500 of Europe’s museums, 
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conclusions contained herein are those of the authors and should not be interpreted 
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libraries, and archives, the Amsterdam Museum[3], which published data on 
73,000 objects, and the LODAC Museum [11], which published data from 114 
museums in Japan. Despite the many recent efforts, there are still significant 
challenges in publishing data about artwork to the Linked Data Cloud. 

There are three steps in the process of mapping the data of a museum to the 
Linked Data Cloud. First, there is the problem of mapping the underlying data 
sources with the metadata about the artwork into RDF. As noted, by de Boer 
et al. [3], this can be a complicated process since many museums have rich, hier-
archical, graph-structured data that has been collected over many years. There 
are often attributes or properties of this data that are unique to a particular 
museum and the data is often inconsistent and noisy since it has typically been 
maintained over a long period of time by many individuals. In past work, this 
mapping process is typically done by manually writing rules or programs to de-
fine the mapping. Second, once the data is in RDF, the next step is to find the 
links from the metadata to other repositories, such as Dbpedia or Geonames. In 
previous work, this has also been done by defining a set of rules for performing 
the mapping. Because of the difficulty of this problem, the number of links in 
past work in this space is actually quite small as a percentage of the total set of 
objects that have been published. The third step is to curate the data to ensure 
that both the information that is published and the links to other sources within 
the LOD are accurate. Because curation is so labor intensive, this step has been 
largely ignored is previous work. 

The general goal of our project is to develop the technology to allow muse-
ums and other organizations to map their own data to Linked Open Data. The 
work described in this paper is the first step towards that larger goal. In par-
ticular, we describe the lessons learned in the process of mapping the metadata 
that describes the 41,000 objects of the Smithsonian American Art Museum 
(SAAM). In our previous work, we developed a system called Karma for map-
ping complex, hierarchically structured sources to RDF with respect to a given 
domain ontology. However, in the real-world data provided by the Smithsonian, 
we discovered that there were complex structures that required new capabilities 
in Karma. In terms of linking, we found that mapping the entities, such as artist 
names, to DBpedia could not be easily or accurately performed using existing 
tools, so we developed a specialized mapping approach to achieve high precision 
matches. In the past work in this space, either very few of the entities are linked 
across sources or when they are linked the precision is quite low. Finally, to 
ensure that the Smithsonian publishes high quality linked data, we developed 
a curation tool that allows the Museum staff to easily review and correct any 
errors in the automatically generated links to other sources. 

In the remainder of this paper, we describe our approach and present the 
lessons learned in mapping (Section 2), linking (Section 3), and curating (Sec-
tion 4) the data of the Smithsonian American Art Museum. For each of these 
topics, we describe our approach, present lessons learned, and evaluate the effec-
tiveness of our approach. We then compare our work to previous work (Section 5) 
and conclude with a discussion of the contributions and future work (Section 6). 
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3 Connecting the Smithsonian to the Linked Data Cloud 

2 Mapping the SAAM Data to RDF 

2.1 The SAAM Database 

SAAM stores collection metadata in a relational database managed by TMS4 , a 
comprehensive data management system for museums. The SAAM deployment 
of TMS consists of over 100 tables, containing significant amounts of data that 
needs to remain private. In order to avoid issues about private data, we only 
use the tables that the museum uses to drive their Web site. All the information 
in these eight tables already appears on the museum Web site, so the museum 
is amenable to publishing it as Linked Data. The structure and format of these 
data are tailored to the needs of the Web site and some fields need to be decoded 
to produce appropriate RDF. For example, descriptive terms are encoded in text 
such as “Authorities\Attributes\Objects\Folk Art”. The database includes data 
about 41,267 objects and the 8,261 artists who created them. 

For objects, the database contains the regular tombstone information in-
cluding classification (e.g., sculpture, miniature), their role (e.g., artist, printer), 
available images, terms (e.g., Portrait Female – Turner, Tina). For artists, the 
database contains names, including multiple variants (e.g., married name, birth 
or maiden name), title and suffixes, biographical information and geographical 
information including city, county, state and country of relevant places (e.g., 
birth and death place, last known residence) and citation information. 

Lesson 1: Satisfy the legal department first. Much of the data in museums is 
proprietary and getting approval from the legal department can be challenging. 
We use the data that drives the Web site; it is not the raw data, but adequate 
and circumvents issues that could have stopped or delayed the project. 

2.2 Europeana Data Model (EDM) 

The Europeana Data Model (EDM) is the metamodel used in the Europeana 
project5 to represent data from Europe’s cultural heritage institutions. We base 
our ontology (Figure 1) on EDM because it is a comprehensive, yet extensible 
OWL ontology and it maximizes the opportunity to integrate the SAAM Linked 
Data with other datasets that are already using it. In addition to EDM, we use 
other popular vocabularies/ontologies used in the Linked Data cloud: SKOS6 

for the classification of artworks, artist and place names; Dublin Core7 for the 
tombstone data; RDA Group 2 Elements8 to represent biographical information; 
and schema.org9 to represent geographical data (city, state, country). 

4 gallerysystems.com/tms 
5 http://europeana.eu 
6 http://www.w3.org/2004/02/skos/ 
7 http://purl.org/dc/elements/1.1/ and http://purl.org/dc/terms/ 
8 http://rdvocab.info/ElementsGr2 
9 http://schema.org/ 

http://schema.org
http://rdvocab.info/ElementsGr2
http://purl.org/dc/terms
http://purl.org/dc/elements/1.1
http://www.w3.org/2004/02/skos
http://europeana.eu
https://gallerysystems.com/tms
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Fig. 1. The SAAM ontology. Named ovals represent classes, un-named green ovals 
represent literals, arcs represent properties, boxes contain the number of instances 
generated in the SAAM dataset. 

One of the most challenging tasks in the project was selecting and extending 
the ontologies. We considered EDM and CIDOC CRM10; both are large and 
complex ontologies, but neither fully covers the data that we need to publish. We 
needed vocabularies to represent biographical and geographical information, and 
there are many to choose from. Following the lead of the Amsterdam Museum [3], 
we used RDA Group 2 Elements for the biographical information. We didn’t find 
guidance for representing the geographical information in the cultural heritage 
community so we selected schema.org as it is a widely used vocabulary. Our 
extensions (shown in boldface/red in Figure 1) are subclasses or subproperties 
of entities in the ontologies we reuse. 

Lesson 2: A library of ontologies for cultural heritage is desperately needed. While 
EDM represents an excellent starting point for modeling cultural heritage data, 
the community can benefit from guidance on vocabularies to represent data not 
covered by EDM and an integrated library with the recommended ontologies. 
10 http://www.cidoc-crm.org 

http://www.cidoc-crm.org
https://schema.org
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2.3 Using Karma to Map the SAAM Data to RDF 

In previous work [9], we developed Karma, a tool to map structured data to 
RDF according to an ontology of the user’s choice. The goal is to enable data-
savvy users (e.g., spreadsheet users) to do the mapping, shielding them from 
the complexities of the underlying technologies (SQL, SPARQL, graph patterns, 
XSLT, XPath, etc). Karma addresses this goal by automating significant parts 
of the process, by providing a visual interface (Figures 2 to 4) where users see the 
Karma-proposed mappings and can adjust them if necessary, and by enabling 
users to work with example data rather than just schemas and ontologies. 

The Karma approach to map data to ontologies involves two interleaved 
steps: one, assignment of semantic types to data columns and two, specification 
of the relationships between the semantic types. A semantic type can be either 
an OWL class or the range of a data property (which we represent by the pair 
consisting of a data property and its domain). Karma uses a conditional random 
field (CRF) [10] model to learn the assignment of semantic types to columns 
of data [5] from user-provided assignments. Karma uses the CRF model to 
automatically suggest semantic types for unassigned data columns. When the 
desired semantic type is not among the suggested types, users can browse the 
ontology through a user friendly interface to find the appropriate type. Karma 
automatically re-trains the CRF model after these manual assignments. 

The relationships between semantic types are specified using paths of object 
properties. Given the ontologies and the assigned semantic types, Karma creates 
a graph that defines the space of all possible mappings between the data source 
and the ontologies [9]. The nodes in this graph represent classes in the ontology, 
and the edges represent properties. Karma then computes the minimal tree 
that connects all the semantic types, as this tree corresponds to the most concise 
model that relates all the columns in a data source, and it is a good starting point 
for refining the model. Sometimes, multiple minimal trees exist, or the correct 
interpretation of the data is defined by a non-minimal tree. For these cases, 
Karma provides an easy-to-use GUI to let users select a desired relationship (an 
edge in the graph). Karma then computes a new minimal tree that incorporates 
the user-specified relationships. 

Challenge 1: Data preparation. We encountered multiple situations where 
we had to filter and transform data prior to modeling it and converting it to 
RDF. The following are the the types of data preparation tasks we encountered: 
Filtering tables: for example, the SAAM tables represent constituents, which 
includes both people and organizations. The ontologies for people and organiza-
tions are different so we defined database views to filter the tables accordingly. 
Data extraction: for example, the keywords associated with the art objects need 
to be extracted from text such as “Authorities\Attributes\Objects\Subject Spe-
cific\Animal\bird\owl”. Concatenating and formatting columns: the SAAM ta-
bles represent people names, dates and places in a structured form (e.g., year, 
month and date in separate columns). We needed to concatenate these fields to 
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construct values for single properties (e.g., dateOfBirth), taking care to insert 
separators and leading zeroes to format them appropriately. 

We addressed these data preparation tasks before modeling them in Karma 
by writing scripts in Java to transform the data and by defining views in SQL. 
We then loaded the new tables and views in Karma to model them. While data 
preparation is routine in database applications and powerful tools are available 
to support them, RDF mapping tools (including Karma) lack the needed ex-
pressivity. Tools like ClioPatria [3] allow users to define expressions in a full 
programming language (Prolog in the case of ClioPatria) and invoking them 
within their mapping rules. Our approach is to enable users to use whatever 
tools they are familiar with in a prior data preparation step. 

Lesson 3: The data preparation/data mapping split is effective: The range of data 
preparation tasks is open-ended and ad hoc. It is wise to acknowledge this and 
to design a data mapping architecture that is compatible with traditional data 
preparation tools. This allows the data mapping language to remain relatively 
simple. Karma integrates with a data preparation step by providing the ability 
to specify many aspects of the mapping in the data tables themselves (discussed 
below). We did the data preparation primarily using SQL views, other users of 
Karma have used Google Refine11 . 

Challenge 2: Mapping columns to classes. Mapping columns to the on-
tology is challenging because in the complete SAAM ontology there are 407 
classes and 105 data properties to choose from. Karma addresses this problem 
by learning the assignment of semantic types to columns. Figure 2 shows how 
users define the semantic types for the constituentid (people or organizations) and 
place columns in one of the SAAM tables. The figure shows a situation where 
Karma had learned many semantic types. The left part shows the suggestions 
for constituentid. The SAAM database uses sequential numbers to identify both 
constituents and objects. This makes them indistinguishable, so Karma offers 
both as suggestions, and does not offer other irrelevant and incorrect sugges-
tions. The second example illustrates the suggestions for the place column and 
shows how users can edit the suggestions when they are incorrect. 
11 http://code.google.com/p/google-refine/ 

Semantic Type Suggestions

Type-in box Browse ontologyType-in box Browse ontologyType-in box Browse ontology

Fig. 2. Karma suggests semantic types and enables users to easily customize them. 

http://code.google.com/p/google-refine
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7 Connecting the Smithsonian to the Linked Data Cloud 

Challenge 3: Connecting the classes. This is also challenging because there 
are 229 object properties in the ontology to choose from. Figure 3 illustrates 
how Karma automatically connects the semantic types for columns as users 
define them. In the first screen the user assigns a semantic type for consitutentid. 
In the second screen, the user assigns a semantic type for place, and Karma 
automatically adds to the model the associatedPlace object property to connect 
the newly added SaamPlace to the pre-existing SaamPerson. Similarly, when the 
user specifies the semantic type for column city, Karma automatically adds the 
address object property. 
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Fig. 3. Each time the user adds new semantic types to the model, Karma connects 
them to the classes already in the model. 

Each time users model the semantic type of a column, Karma connects it to 
the rest of the model. In the examples, the connections use a single property, but 
Karma searches the whole graph and finds longer paths when appropriate. In 
addition, weights in the graph [9] bias the algorithm to prefer specific properties 
rather than general properties inherited from superclasses. Sometimes, multiple 
lowest-cost models exist, or the appropriate model is not the lowest-cost model. 
Users can easily adjust the proposed model by clicking on an incorrect property 
and selecting the appropriate one from a menu of all compatible properties. 

Lesson 4: Property domain and range definitions are important: Karma lever-
ages domains and ranges to automate modeling the relationships between the 
columns in the tables, often selecting the correct property. When Karma pro-
posed non-sensical, complicated paths to connect classes (e.g., subclass path via 
Thing), it was often because the relevant properties lacked the proper domain 
or range information or because the classes we defined had not been defined as 
subclasses of the appropriate classes. This feedback helped us to integrate the 
SAAM-specific ontology with the large complex ontologies we are reusing. 
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Fig. 4. Mapping columns where different rows must be mapped using different prop-
erties: 1) the data table; 2) a table to translate ConGeoCode to ontology properties; 3) 
join to add a column with the property URIs; 4) map values in the ConGeoProperty 
column to the associatedPlace property. 

Challenge 4: Mapping depends on field values. Figure 4 illustrates a 
situation where the mapping from a table to the desired ontology cannot be 
specified at the schema level. The WebConGeography table contains information 
associated with people. Each row represents a place association: the first column 
(ConstituentID) represents the person identifier, the middle columns represent the 
place and the last column (ConGeoCode) represents the meaning of the place. 
The SAAM ontology defines a generic property associatedPlace to represent the 
relationship between a person and a place. This general property is appropriate 
for the first and third rows, but not for the others (e.g., the second row should 
use the more specific property rdaGr2:placeOfBirth). 

To model situations such as this one, users add a column that contains the 
required data. In the particular case illustrated in Figure 4, the user can define a 
table that maps the ConGeoCodes to the appropriate properties (step 2) and then 
do a join to add the new column (step 3). Finally, when defining the semantic 
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type for the new column (step 4), users can specify that the values in the column 
specialize the associatedPlace property. Analogous situations arise in the SAAM 
tables that represent data about dates associated with people and variant people 
names. This type of mapping can be defined in tools such as D2RQ12 , but 
requires an expert user to define multiple, complex conditional mapping rules. 

Lesson 5: Supporting row-level meta-data solves many complex mapping prob-
lems. The same mechanism we used to model row-specific properties can be used 
to model row-specific classes, URIs and language tags. It enables users to invoke 
arbitrary computation using their favorite tools to define data-dependent aspects 
of the mapping that cannot be cleanly represented in declarative representations. 
Other approaches such as D2RQ offer a limited set of built-in functions (e.g., 
concatenation, regular expression) that can be extended by writing Java classes. 
Our approach enables users to use whatever tools they are comfortable using. 

Evaluation We evaluated the effectiveness of Karma by mapping 8 tables (29 
columns) to the SAAM ontology (Table 1). We performed the mapping twice: in 
Run 1, we started with no learned semantic types, and in Run 2 we ran Karma 
using the semantic types learned in the first run. The author of the paper that 
designed the ontology performed the evaluation. Even though he knows which 
properties and classes to use, when Karma didn’t suggest them he used the 
browse capability to find them in the ontology instead of typing them in. It 
took him 18 minutes to map all the tables to RDF, even in the first run, when 
Karma’s semantic type suggestions contained the correct semantic type 24% of 
the time. The second run shows that the time goes down sharply when users 
don’t need to browse the ontology to find the appropriate properties and classes. 
The evaluation also shows that Karma’s algorithm for assigning relationships 
among classes is very effective (85% and 91% correct in Run 1 and Run 2). 

Lesson 6: Ontology design is the hard part. Even though it takes about 8 to 18 
minutes to map all the tables using Karma, it took about 2 weeks after the 
initial design of the ontology to map all the tables. We spent the time designing 
and redesigning the ontology. During that period, we mapped the tables many 
times to slightly different ontologies. So, in Table 1 Run 2 is typical as we spent 
significant type rerunning Karma after slight changes to the ontology. 

12 http://d2rq.org 

Table 1. Effectiveness of Karma’s automation capabilities. 

# of times Karma’s top 4 
suggestions contain the 
correct semantic type 

# of times Karma correctly 
assigns relationships 

among classes 
Time (minutes) 

Run 1 7 out of 29 (24%) 30 out of 35 (85%) 18 
Run 2 27 out of 29 (93%) 32 out of 35 (91%) 8 

http://d2rq.org
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3  Li n ki n g  t o  E x t e r n al  R e s o u r c e s  

T h e  R D F  d at a  will  b e n e fit  t h e  S mit h s o ni a n  m u s e u m  a n d  t h e  c o m m u nit y  if it 
i s li n k e d t o u s ef ul  d at a s et s.  We  f o c u s e d o n  li n ki n g S A A M  arti st s  t o D B p e di a 1 3  

a s  it p r o vi d e s  a  g at e w a y  t o ot h er  Li n k e d  D at a  r e s o u r c e s  a n d  it i s a  f o c u s f or 
i n n o v ati v e a p pli c ati o n s.  We  al s o  li n k e d t h e  S A A M  arti st s  t o t h e  G ett y  U ni v er s al  
Li st  of  Arti st  N a m e s  ( U L A N)  a n d  t o t h e  arti st s  i n t h e  Rij k s m u s e u m  d at a s et.  

S A A M  n e e d s  t o v erif y  all  m at c h e s  b ef or e  p u bli s hi n g  t h e m,  s o  t o m a k e  t h e  v er -
i fi c ati o n p r o c e s s  m a n a g e a bl e,  w e  s o u g ht  hi g h- p r e ci si o n  al g orit h m s.  We  m at c h e d  
p e o pl e  u si n g  t h ei r  n a m e s,  i n cl u di n g v ari a nt s,  a n d  t h ei r  bi rt h  d at e s  a n d  d e at h  
d at e s.  T h e  t a s k  i s c h all e n gi n g  b e c a u s e  p e o pl e’ s  n a m e s  ar e  r e c or d e d  i n m a n y  dif -
f er e nt w a y s,  m ulti pl e  p e o pl e  c a n  h a v e  t h e  s a m e  n a m e,  a n d  bi rt h  d at e s  a n d  d e at h  
d at e s  ar e  oft e n  mi s si n g  or  i n c or r e ct. F or  t e c h ni c al  r e a s o n s  w e  di d  n ot  u s e  ot h er  
i nf or m ati o n, alt h o u g h  w e  pl a n  t o d o  s o  i n t h e  f ut u r e. 

O u r  a p p r o a c h  i n v ol v e s e sti m ati n g  t h e  r ati o  of  p e o pl e  i n D B p e di a  h a vi n g  e a c h  
p o s si bl e  v al u e  f or t h e p r o p erti e s  w e  u s e  f or m at c hi n g  ( e. g.,  r ati o  of  p e o pl e  b or n  
i n 1 8 7 9).  F or  att ri b ut e s  c o m p ar e d  u si n g  e q u alit y  ( bi rt h / d e at h  y e ar s),  w e  s c a n  
al l p e o pl e  i n D B p e di a  c o u nti n g  t h e  n u m b er  t h at  h a v e  e a c h  s p e ci fi c  v al u e.  F or  
d e p e n d e nt  att ri b ut e s  s u c h  a s  bi rt h  a n d  d e at h  y e ar,  w e  al s o  c o m p ut e  t h e  r ati o s  f or 
p ai r s  of  v al u e s.  We  c o m p ar e  n a m e s  u si n g  t h e  J ar o- Wi n kl er  st ri n g  m et ri c  [ 4], a n d  
f or t h e m  c o m p ut e  t h e r ati o s  a s  f oll o w s: w e  di vi d e  t h e  i nt er v al [ 0, 1]  i n bi n s  of  si z e  
, a n d  f or e a c h  bi n  w e  e sti m at e  t h e  n u m b er  of  p ai r s  of  p e o pl e  w h o s e  n a m e s  di ff er  

b y  a  J ar o- Wi n kl er  s c or e  l e s s t h a n  . E m pi ri c all y,  w e  d et er mi n e d  t h at   = 0 .0 1  
a n d  1 0  milli o n  s a m pl e s  yi el d  g o o d  r e s ult s  i n o u r  gr o u n d  t r ut h  d at a s et.  

T h e  m at c hi n g  al g orit h m  i s si m pl e.  Gi v e n  a  S A A M  p er s o n  a n d  a  D B p e di a  
p er s o n,  t h ei r  m at c hi n g  s c or e  i s s  = 1  −  d  ∗  n  w h er e  d  i s t h e  d at e  s c o r e  a n d  
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Evaluation To evaluate our algorithm we constructed ground truth for a dataset 
of 535 people in the SAAM database (those whose name starts with A). We man-
ually searched in Wikipedia using all variant names and verified the matches 
using the text of the article and all fields in the SAAM record, including the 
biography. We found 176 matches in DBpedia. 

Figure 5 shows the evaluation results on the ground truth (note that the 
matching score s decreases from left to right). The highest F-score .96 achieves 
a precision of .99 and a recall of .94 (166 correct results, 1 incorrect result). At 

∗this threshold s all names and the years for all but 5 people match exactly. The 
incorrect result is one where neither date matches, but interestingly, there are 4 
results where the years are present but not equal. The sharp increase in recall 

∗ comes at a score s > s where suddenly 37 results for people missing a single 
date are above threshold (all these are correct results). The next interesting 

∗threshold is ŝ = 0.9995. Between s and ŝ are 13 results; of these, 4 are correct 
(2 with non matching names) and 9 incorrect, yielding .938 precision and .966 
recall. For s < ŝ, the density of correct results decreases sharply, containing only 
4 correct results in the next 286 candidates. Based on these results, we used ŝ 
as the threshold to match the SAAM data against all DBpedia people (2,807 
results), the Getty ULAN (1,759 results) and the Rijksmuseum (321 results). 

4 Curating the RDF and the Links 

Museums need the ability to ensure that the Link Data they publish are of high 
quality and that quality remains high as data sources evolve. 

The first aspect of the curation process is to ensure that the RDF is correct. 
Museum personnel can easily browse individual RDF records on the Web, but 
without seeing and understanding the relationship between an RDF record and 
the underlying database records, it is hard to assess whether the RDF is correct. 
Karma helps museum personnel understand these relationships at the schema 
level by graphically showing how database columns map to classes and properties 
in the ontology (e.g., Figures 3 and 4). Karma also lets uses click on individual 
worksheet cells to inspect the RDF generated for it, helping them understand 
the relationships at the data level. These graphical views also enabled SAAM 
personnel and the Semantic Web researchers to communicate effectively while 
refining the ontology and the mappings. Our goal by the end of the project is 
that SAAM personnel will use Karma to refine the mappings on their own. 

The second aspect of the curation process is to ensure that links to external 
sources are correct. Our approach is to 1) record the full provenance of each 
link so that users (and machines) can record links and inspect them when the 
data sources or the algorithm change, and 2) make it easy for users to review 
the results of the linking algorithm. We use the PROV ontology14 to represent 
provenance data for every link including revisions, matching scores, creation 
times, author (human or system/version) and data used to produce the link. 

14 http://www.w3.org/TR/prov-o/ 

http://www.w3.org/TR/prov-o
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Fig. 6. The Karma interface enables users to review the results of linking. 

Users review the links using the Web interface depicted in Figure 6. The interface 
is a visualization and editor of the underlying PROV RDF records. Each row 
represents a link. The first cell shows the records being linked: the top part 
shows links to information about the SAAM record and the bottom part shows 
links to information for a record in an external source. The next columns show 
the data values that were used to create the link and information about its 
revision history. The last column shows buttons to enable users to revise links 
and provide comments (recorded as PROV records). SAAM personnel used this 
interface to verify all links in our ground trruth dataset. 

Lesson 7: PROV is a suitable technology for curating the links. In addition to 
supporting the user interface for human verification of links, the PROV repre-
sentation affords other benefits. We can use SPARQL statements to construct a 
dataset of owl:same-as triples containing only those links that have been verified 
by a human (suitable for publication on the Smithsonian Web site) or a dataset 
containing containing all links with a matching score above a given threshold 
(suitable for other applications). Similarly, when the underlying data changes 
(e.g., there is a new version of DBpedia) or a new version of the matching soft-
ware becomes available, it is possible to retrieve the affected links. 

5 Related Work 

There has been a great deal of recent interest in publishing museum data as 
Linked Open Data. One of the most ambitious efforts is a European project, 



DR
AF
T

 

13 Connecting the Smithsonian to the Linked Data Cloud 

called Europeana, which has published the metadata on 17 million items from 
1,500 cultural institutions [7]. This project developed a very rich and comprehen-
sive ontology, called the Europeana Data Model (EDM) and then standardized 
the data that each organization can publish, which is how they were able to 
aggregate data from such a large number of cultural institutions. The focus of 
that effort was on developing a comprehensive data model and mapping all of 
the data to that model. Several smaller efforts focused on the problem of how to 
map rich metadata into RDF and preserve the content of the original data. This 
includes the MuseumFinland, which published the metadata on 4,000 cultural 
artifacts from museums and sites in Finland [8] and the Amsterdam Museum 
[3], which published the metadata on 73,000 objects from that museum. In both 
of these efforts the data is first mapped directly from the raw source into RDF 
and then there are complex mapping rules to transform the RDF into an RDF 
expressed in terms of their chosen domain ontology. The actually mapping pro-
cess requires the use of Prolog rules for some of the more complicated cases. 
Finally, there is another effort, called the LODAC Museum, which published the 
metadata from 114 museums and research institutes in Japan. In that effort, 
they defined a relatively simple ontology that consists of objects, artists, and 
institutions to simplify the mapping process. 

In our work on mapping the 41,000 objects from SAAM, we went beyond the 
previous work in several important ways. First, in terms of the mapping process, 
we developed an approach that supports the mapping of complex sources (both 
relational and hierarchical) into a rich domain ontology [9]. This approach is 
in contrast to previous work, which first maps the data directly into RDF [2] 
and then aligns the RDF with the domain ontology [1]. As described earlier, we 
build on the EDM ontology developed as part of the Europeana effort, which is 
a fairly rich domain ontology that is easily extensible. Our approach makes it 
possible to preserve the richness of the original metadata sources, but unlike the 
MuseumFinland and the Amsterdam Museum projects, a user does not need to 
learn a complex rule language and does not need to do any programming. 

Second, in terms of the linking process, we have performed significantly more 
linking of data than any of these previous efforts. There has been a significant 
body of literature on linking data across sources and the most closely related 
work on linking is the work on Silk [14] and the work on entity coreference in 
RDF graphs [13]. Silk provides a nice framework that allows a user to define a 
set of matching rules and weights that determine whether two entities should 
be matched. We tried to use Silk on this project, but we found it extremely 
difficult to write a set of matching rules that produced high quality matches. 
The difficulty was due to a combination of missing data and the variation in the 
discriminability of different data values. The approach that we used in the end 
was inspired by the work on entity conference by Song and Heflin [13], which 
deals well with missing values and takes into account the discriminability of the 
attribute values in making a determination of the likelihood of a match. 

Third, because of the importance to the Smithsonian of producing a high-
quality set of linked data, we developed a curation tool that allows an expert from 
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the museum to review and approve or reject the links produced automatically by 
our system. Previous work has largely ignored the issue of link quality (Halpin 
et al. [6] reported that in one evaluation roughly 51% of the same-as links were 
found to be correct). The exception to this is the effort by the NY Times to map 
all of their metadata to linked data through a process of manual curation. In 
order to support a careful evaluation of the links produced by our system, we 
developed the linking approach that allows a link reviewer to see the data that 
is the basis for the link and to be able to drill down into the individual sources 
to evaluate a link. 

6 Conclusions and Future Work 

In this paper we described our work on mapping the data of the Smithsonian 
American Art Museum to Linked Open Data. We presented the end-to-end pro-
cess of mapping this data, which includes the selection of the domain ontologies, 
the mapping of the database tables into RDF, the linking of the data to other 
related sources, and the curation of the resulting data to ensure high-quality 
data. This initial work provided us with a much deeper understanding of the 
real-world challenges in creating high-quality link data. 

For the Smithsonian, the linked data provides access to information that was 
not previously available. The Museum currently has 1,123 artist biographies that 
it makes available on its website; through the linked data, we identified 2,807 
matches to DBpedia. They can now embed the Wikipedia biographies into their 
collection information, increasing the biographies they offer by 60%. Via the 
links to DBpedia, they now have links to the New York Times, which includes 
obituaries, exhibition and publication reviews, auction results, and more. They 
can embed this additional rich information into their records, including 1,759 
Getty ULAN identifiers, to benefit their scholarly and public constituents. 

The larger goal of this project is not just to map the SAAM data to Linked 
Open Data, but rather to develop the tools that will enable any museum or 
other organization to map their data to Linked Data themselves. We have al-
ready developed the Karma integration tool, which greatly simplifies the prob-
lem of mapping structured data into RDF, a high-accuracy approach to linking 
datasets, and a new curation tool that allows an expert to review the links across 
data sources. Beyond these techniques and tools, there is much more work to be 
done. First, we plan to continue to refine and extend the ontologies to support 
a wide range of museum-related data. Second, we plan to continue to develop 
and refine the capabilities for data preparation and source modeling in Karma 
to support the rapid conversion of raw source data into RDF. Third, we plan 
to generalize our initial work on linking data and integrate a general linking 
capability into Karma that allows a user to create high-accuracy linking rules 
and to do so by example rather than having to write the rules by hand. 

We also plan to explore new ways to use the linked data to create compelling 
applications for museums. A tool for finding relationships, like EverythingIsCon-
nected.be [12], has great potential. We can imagine a relationship finder appli-

https://nected.be
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cation that allows a museum to develop curated experiences, linking artworks 
and other concepts to present a guided story. The Museum could offer pre-built 
curated experiences or the application could be used by students, teachers, and 
others to create their own self-curated experiences. 
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